Wednesday, December 13, 2017

Tutorial of Differences between Hub, Bridge, Switch and Router

Ref: http://nhprice.com/tutorial-of-differences-between-hub-bridge-switch-and-router.html

Tutorial of Differences between Hub, Bridge, Switch and Router


Hub

A Hub is the simplest of these devices. In general, a hub is the central part of a wheel where the spokes come together. Hubs cannot filter data so data packets are sent to all connected devices/computers and do not have intelligence to find out best path for data packets. This leads to inefficiencies and wastage.
As a network product, a hub may include a group of modem cards for dial-in users, a gateway card for connections to a local area network (for example, an Ethernet or a token ring), and a connection to a line. Hubs are used on small networks where data transmission is not very high.Bridge
In telecommunication networks, a bridge is a product that connects a local area network (LAN) to another local area network that uses the same protocol. Having a single incoming and outgoing port and filters traffic on the LAN by looking at the MAC address, bridge is more complex than hub. Bridge looks at the destination of the packet before forwarding unlike a hub. It restricts transmission on other LAN segment if destination is not found.
A bridge works at the data-link (physical network) level of a network, copying a data frame from one network to the next network along the communications path.bridge vs routerSwitch
A switch when compared to bridge has multiple ports. Switches can perform error checking before forwarding data, which are very efficient by not forwarding packets that error-end out or forwarding good packets selectively to correct devices only.
Switches can support both layer 2 (based on MAC Address) and layer 3 (Based on IP address) depending on the type of switch. Usually large networks use switches instead of hubs to connect computers within the same subnet.
router vs switchRouter
A router, like a switch forwards packets based on address. Usually, routers use the IP address to forward packets, which allows the network to go across different protocols. Routers forward packets based on software while a switch (Layer 3 for example) forwards using hardware called ASIC (Application Specific Integrated Circuits). Routers support different WAN technologies but switches do not.
Besides, wireless routers have access point built in. The most common home use for routers is to share a broadband internet connection. As the router has a public IP address which is shared with the network, when data comes through the router, it is forwarded to the correct computer.
the original material is referred from:
More tips on switches or routers comparison at:

Sunday, November 19, 2017

The dreaded engine surge

http://m.autoserviceprofessional.com/article/92420/The-dreaded-engine-surge

The dreaded engine surge


June 20, 2012 | by Mike Mavrigian

A crankshaft position sensor features a permanent magnet and generates an AC signal as the toothed position wheel sweeps past the sensor.

In this article, we'll discuss engine idle issues, surging and "hunting" problems. First let's cover the "basics" in terms of the possible causes of engine surging/hunting, where engine speed suddenly (or slowly) changes.

A wide variety of issues can prompt an engine surge. The problem may involve an annoying change (up/down) of engine speed while cruising at a steady pace, a low drop (or even cut-out) at idle or when approaching a stop, a wild high engine speed of several thousand rpm followed by a drop to near zero, etc.

• Transmission not locking up (or slipping)

• Vacuum leak

• EGR valve stuck open

• Dirty/sticking IAC (idle air control valve) (P0505)

• Engine temperature sensor

• Knock sensor

• Clogged EGR ports

• Variable valve timing solenoid clogged/sticking

• Air in cooling system

• MAF connector loose/intermittent connection/faulty MAF

• Fuel system pressure issue

• Clogged fuel filter

• Plugged/restricted exhaust

• Crankshaft position sensor (P0336)

• Power steering pressure sensor circuit

• A/C compressor cycling on/off due to low refrigerant

• Faulty TPS

• Clogged/restricted catalytic converter

• Ignition system

• PCV

• High pressure oil system (diesel)

Common/likely causes

These are areas to suspect first if initial diagnosis is unclear:

SURGING

• Fuel pump control circuit

• Spark plug(s)

• Ignition system

• Injector(s)

• Transmission lock-up issue

HIGH IDLE

• IAC

• ECM power circuit

• A/C signal circuit

• PCV

LOW IDLE

• IAC

• ECM power circuit

• A/C signal circuit

• PCV

• Fuel injector(s)

ENGINE SPEED “HUNTING”

• IAC

• ECM

• Fuel pump control circuit

• Spark plug(s)

• Ignition system

• Injector(s)

• PCV

Crankshaft position sensor (CKP)

A faulty CKP issue should be accompanied by a P0336 code. The CKP is (usually) a two-wire sensor (signal and ground). The sensor features a permanent magnet (or three-wire hall-effect sensor, featuring ground, voltage and signal) mounted in the engine block that aligns with a toothed reluctor wheel that is attached to the crankshaft.

As the crank rotates, the reluctor wheel passing by the magnet generates an AC signal that the ECU uses to identify engine speed. Depending on the engine design and model, the number of reluctor wheel teeth may vary. Keep in mind that even within the same engine family (the GM LS engines are an example), the tooth count will vary, and the tooth-count must be matched to the programming in the ECU.

In combination with the camshaft position sensor (CMP), the CKP signals are used by the ECU to manage fuel injection and spark delivery.

A faulty CKP (or CKP circuit) can easily cause an intermittent misfire, which naturally results in what the driver may perceive as a surging effect. A bad CKP can also cause a no-start and intermittent stalling issues.

The root cause may involve a faulty CKP, or an issue with the reluctor wheel (damaged or missing teeth or metallic contaminants on the teeth), a dislodged reluctor wheel or, obviously, a short or open in the wiring harness. Most reluctor wheels are press-fit to the crankshaft. Although rare, if the wheel loosens and moves out of position (out of phase or crooked), and if this problem is suspected or confirmed, this must be addressed immediately, since a loose reluctor wheel can not only cause misfiring issues, but if severe enough, can also create mechanical damage (block interference or possible piston skirt damage).Some reluctor wheel designs (as in this LS example) are serviceable and are installed with a tight interference fit. Installation requires both the proper installation tool and evenly distributed heat at the wheel (oven) in order to avoid damaging the wheel.

If, on the rare occasion that a reluctor wheel must be replaced or repositioned,     do not attempt this without the specialty tool required to properly register the wheel in-time with the crankshaft. This service is best performed by an engine builder who is familiar with the specific engine type at hand. If the problem is mechanically severe enough, the easy way out would be to replace the crankshaft with a new crank that already features an installed reluctor wheel.

 

Power steering pressure sensor

An example of this is seen in the early Honda Odyssey. The sensor wire (for the power steering pressure) tends to corrode or break loose. The ECU gets confused, and may drive the engine speed up and down (trying to compensate for engine load during power steering operation).

Air in coolant

In order for an engine coolant temperature sensor to provide correct values to the ECU, the sensor must be immersed in coolant at all times. If air pockets (circulating through the system) hit the sensor, the intermittent hot air/coolant exposure to the sensor can cause values to fluctuate, and the ECU receives alternating/intermittent temperature values. In turn, the ECU attempts to manage fuel and spark to adapt to the changing values. Make sure that the cooling system is full, and bleed air from the system as needed.

TPS changes

If the throttle shaft is worn, consider that the TPS (throttle position sensor) is positioned at the far end of the shaft. Any deviation in throttle shaft position (due to shaft wear) will create uneven signals to be generated by the TPS reacting to this deviation. If closed TPS voltage changes, the ECU may assume that your foot is on the throttle, causing a richer fuel mixture to be delivered. This can also be caused by a faulty TPS, or even a poor ground.

With the engine off, check TPS voltage with the accelerator pedal relaxed. Then work the pedal a few times and see if the voltage changes. If you continue to obtain different readings with the throttle released, suspect a sticking throttle shaft or faulty TPS.

Some engines feature convenient bleeder valves (screws) at the upper coolant area.

Honda FITV

As another example, Honda engines (I believe 1996 and later) feature a FITV (Fast Idle Thermo Valve) that’s located directly under the throttle body. This valve is prone to sticking. If the plunger is backed out too far, this can affect a vacuum leak, causing a high idle after the engine has warmed to operating temperature. This can also result in a pulsating/fluctuating engine speed. While most repair manuals recommend replacing this valve assembly, it can be removed and cleaned. It’s not uncommon for an IAC to be blamed for an FITV issue.

Idle air control valve (IAC)

Most OEMs refer to this as an IAC, while other names are used by some such as AIS (Automatic Idle Speed) and ISC (Idle Speed Control).

A problem with the IAC should throw a P0505 code. A failed/problematic IAC can cause engine stalling when off-throttle, and/or excessively high engine rpm, particularly at idle.

The IAC, signaled by the ECU, controls the throttle opening at idle. When the engine idle speed is either above or below the programmed range, the ECU prompts the ISC to either increase or decrease bypass airflow.

Naturally, as the IAC prompts the throttle plate to open, engine speed increases. The IAC features a plunger mechanism that may be stuck/sticking. Depending on the model, the IAC may be cleaned to eliminate open/closed sticking problems. It’s not uncommon to find the IAC solenoid plunger fully extended. This may be an indication that the ECU recognizes an air leak and is trying to lower idle speed by closing the idle air bypass circuit.

The IAC valve is prone to carbon buildup. Note that some IAC valves also feature a vacuum hose that connects the IAC valve to the intake manifold. If the hose is cracked or damaged, the engine will react as though the IAC valve is faulty. Also note that Toyota and Lexus vehicles may feature a non-motorized, magnetic IAC valve, requiring periodic cleaning of the IAC air inlet.

In order to isolate the issue, clear any codes, then disconnect the IAC and start the engine. If the P0505 code does not re-appear, the IAC is faulty. If the code does re-set after disconnecting the IAC and running the engine, chances are there’s a wiring problem, so check for shorts along the harness all the way to the ECU. Also check for continuity on the IAC wires.

Depending on the model, the IAC may be cleaned to eliminate open/closed sticking problems. It’s not uncommon to find the IAC solenoid plunger fully extended. This may be an indication that the ECU recognizes an air leak and is trying to lower idle speed by closing the idle air bypass circuit.

As one example of tracing an idle control system malfunction, following is Toyota’s description of a P0505 code on a 2008 Yaris equipped with the 1NZ-FE engine:

The idling speed is controlled by the ETCS (Electronic Throttle Control System). The ETCS is comprised of the throttle body, throttle actuator (which opens the throttle valve), the TPS (Throttle Position Sensor, which detects the opening angle of the throttle valve), the APP (Accelerator Pedal Position sensor), which detects the accelerator pedal position and the ECM, which controls the ETCS.

Based on the target idling speed, the ECM controls the throttle actuator to provide the proper throttle valve opening angle.

The ECM monitors the idling speed and idling air flow volume to conduct Idle Speed Control (ISC). The ECM determines that the ISC system is malfunctioning if the following conditions apply:

•  The learned idling air flow volume remains at the maximum or minimum volume five times or more during a drive cycle.

•  After driving at 6.25 mph or more, the actual engine idling speed varies from the target idling speed by between 100 and 200 rpm, five times or more during a drive cycle.

•  If the actual idling speed varies from the target idling speed by more than 200 rpm five times or more during a drive cycle, the ECM illuminates the MIL and sets the DTC.

NOTE: The following conditions may also set DTC P0505:

•  The floor carpet may overlap slightly onto the accelerator pedal, causing the pedal to be slightly depressed (causing the throttle valve position to be slightly open).

•   The accelerator pedal may not be fully released.

The tiny orifices in the high pressure oil control valve can easily become contaminated, especially if improper oil is used or if oil changes are infrequent.

Funky MAF

A malfunctioning MAF sensor can cause a wild up/down engine idle speed (say, 0-2,000 rpm). This might be caused by a loose harness connection or by a damaged or contaminated sensing wire.

The MAF sensor measures the amount of air flowing through the throttle valve. The ECM uses this information to determine fuel injection time and to provide the necessary air-fuel ratio. Inside the MAF meter is a heated platinum wire which is exposed to the flow of intake air. By applying a specific current to the wire, the ECM maintains a specific reference temperature at the wire. The incoming air cools the wire (and an internal thermistor), affecting their resistance. To maintain a constant current value, the ECM varies the voltage applied to the MAF. This voltage level is proportional to the airflow through the sensor. As a result, the ECM uses this to calculate the intake air volume.

The circuit is constructed so that the platinum hot wire and the temperature sensor provide a bridge circuit. The power transistor is controlled so that the potentials of A and B remain equal to maintain the predetermined wire temperature.

If there is a defect in the sensor (or an open or short in the MAF circuit), the voltage level deviates from the normal operating range. The ECM interprets this as a malfunction in the MAF meter and sets the DTC.

P0101: This indicates high voltage (engine speed less than 2,000 rpm, coolant temperature 158 degrees F or higher and voltage output of the MAF is more than 2.2V); or low voltage (engine speed is more than 3,000 rpm and MAF voltage output is less than 0.93 V).

P0102: MAF circuit low input (less than 0.2 V). Detection is based on an open in the MAF circuit for three seconds or more. The MAF may be faulty or simply disconnected or the MAF may be dirty/contaminated (NOTE: If the engine is equipped with an aftermarket “oiled” air filter, it is possible that an over-oiled filter may be causing this).

P0103: MAF circuit high input (more than 4.9 V). This usually indicates a short in the meter circuit. The MAF may be disconnected or damaged.

P0104: The MAF circuit is incomplete (poor connection, wiring broken or frayed or poor connector connection. This might also indicate an intake air leak.

Diesel surge

Diesel engines (we’ll cite Ford’s 7.3L, 6.0L, etc., as examples) typically feature a dedicated high-pressure oil system that operates the fuel injectors. The high pressure side typically runs at about 500 psi at idle, 1,200 psi at about 3,300 rpm and about 3,600 psi under full-load acceleration.

This system involves a high pressure oil pump and an IPR (Injection Pressure Regulator). Sticking (or wear) problems with the high pressure control regulator can cause engine surging (most commonly noticeable at lower rpm and at idle), as well as intermittent engine shut-off during low speed braking and/or when approaching a final stop.

If the engine cuts out during a stop, with the transmission placed in neutral or park, the engine fires up again, but dies again when approaching a final stop. Other symptoms can include intermittent difficult starting, a slight stumble when the accelerator pedal is nailed while the engine is turning around 1,000-1,500 rpm and/or annoyingly extended cold-cranking in freezing temperature. Granted, various injector issues could cause some of these problems, but if a customer’s truck enters the shop with the surging/intermittent shut-off issues, definitely inspect the high pressure oil system.

I’ve owned several Ford F350s with the 7.3L Navistar turbo diesel, and have experienced this identical set of issues (most notable on my 2003 model). When these drivability problems began to appear, the “off-the-cuff” reaction was to replace the fuel filter, suspecting that it was moisture-contaminated.

While it’s imperative to regularly replace diesel fuel filters anyway (especially in cold climates), if the first few filter changes don’t solve the glitch, suspect the high pressure oil control valve or regulator. The high pressure oil system runs at very high pressure, and any interruption in pressure flow will cause the ECM to attempt fuel enrichment changes.

NOTE: While it’s certainly easier to replace a sticking control valve, the high pressure control valve is usually rebuildable (basically just disassemble, clean and reassemble). Also be sure to check the high pressure oil rail and its connections for external leakage (which will not only make an oil mess at the rear of the intake manifold, but will cause pressure drops).

It’s also important to remind customers that only specified engine oil should be used in diesel applications, in part because of the special anti-foaming additives in the oils, critical for maintaining an adequate and constant pressure to the injectors to prevent aeration and sub-par injector spray patterns (these anti-foaming agents can break down in the 3,000- to 5,000-mile range). Citing the Ford examples, several oils are appropriate and should carry an API rating of CF-4/SH or CG-4/SH or higher. One example is Shell Rotella-T 15W40.   


Tuesday, October 17, 2017

What is Blockchain

Ref: https://blockgeeks.com/guides/what-is-blockchain-technology

What is Blockchain Technology? A Step-by-Step Guide For Beginners


An in-depth guide by BlockGeeks


Is blockchain technology the new internet?

The blockchain is an undeniably ingenious invention – the brainchild of a person or group of people known by the pseudonym,  Satoshi Nakamoto. But since then, it has evolved into something greater, and the main question every single person is asking is: What is Blockchain?

By allowing digital information to be distributed but not copied, blockchain technology created the backbone of a new type of internet. Originally devised for the digital currencyBitcoin, the tech community is now finding other potential uses for the technology.

Bitcoin has been called “digital gold,” and for a good reason. To date, the total value of the currency is close to $9 billion US. And blockchains can make other types of digital value. Like the internet (or your car), you don’t need to know how the blockchain works to use it. However, having a basic knowledge of this new technology shows why it’s considered revolutionary. So, we hope you enjoy this, what is Blockchain guide.

What is Blockchain Technology?

“The blockchain is an incorruptible digital ledger of economic transactions that can be programmed to record not just financial transactions but virtually everything of value.”
Don & Alex Tapscott, authors Blockchain Revolution (2016)

 

 

 

A distributed database

Picture a spreadsheet that is duplicated thousands of times across a network of computers. Then imagine that this network is designed to regularly update this spreadsheet and you have a basic understanding of the blockchain.

Information held on a blockchain exists as a shared — and continually reconciled — database. This is a way of using the network that has obvious benefits. The blockchain database isn’t stored in any single location, meaning the records it keeps are truly public and easily verifiable. No centralized version of this information exists for a hacker to corrupt. Hosted by millions of computers simultaneously, its data is accessible to anyone on the internet.

To go in deeper with the Google spreadsheet analogy, I would like you to read this piece from a blockchain specialist.

Blockchain as Google Docs

 

“The traditional way of sharing documents with collaboration is to send a Microsoft Word document to another recipient, and ask them to make revisions to it. The problem with that scenario is that you need to wait until receiving a return copy before you can see or make other changes because you are locked out of editing it until the other person is done with it. That’s how databases work today. Two owners can’t be messing with the same record at once.That’s how banks maintain money balances and transfers; they briefly lock access (or decrease the balance) while they make a transfer, then update the other side, then re-open access (or update again).With Google Docs (or Google Sheets), both parties have access to the same document at the same time, and the single version of that document is always visible to both of them. It is like a shared ledger, but it is a shared document. The distributed part comes into play when sharing involves a number of people.

Imagine the number of legal documents that should be used that way. Instead of passing them to each other, losing track of versions, and not being in sync with the other version, why can’t *all* business documents become shared instead of transferred back and forth? So many types of legal contracts would be ideal for that kind of workflow.You don’t need a blockchain to share documents, but the shared documents analogy is a powerful one.”

William Mougayar, Venture advisor, 4x entrepreneur, marketer, strategist and blockchain specialist 

Blockchain Durability and robustness

Blockchain technology is like the internet in that it has a built-in robustness. By storing blocks of information that are identical across its network, the blockchain cannot:

Be controlled by any single entity.


Has no single point of failure.


Bitcoin was invented in 2008. Since that time, the Bitcoin blockchain has operated without significant disruption. (To date, any of problems associated with Bitcoin have been due to hacking or mismanagement. In other words, these problems come from bad intention and human error, not flaws in the underlying concepts.)

The internet itself has proven to be durable for almost 30 years. It’s a track record that bodes well for blockchain technology as it continues to be developed.

“As revolutionary as it sounds, Blockchain truly is a mechanism to bring everyone to the highest degree of accountability. No more missed transactions, human or machine errors, or even an exchange that was not done with the consent of the parties involved. Above anything else, the most critical area where Blockchain helps is to guarantee the validity of a transaction by recording it not only on a main register but a connected distributed system of registers, all of which are connected through a secure validation mechanism.” 

– Ian KhanTEDx Speaker | Author | Technology Futurist

 

Transparent and incorruptible

The blockchain network lives in a state of consensus, one that automatically checks in with itself every ten minutes.  A kind of self-auditing ecosystem of a digital value, the network reconciles every transaction that happens in ten-minute intervals. Each group of these transactions is referred to as a “block”. Two important properties result from this:

Transparency data is embedded within the network as a whole, by definition it is public.


It cannot be corrupted altering any unit of information on the blockchain would mean using a huge amount of computing power to override the entire network.


 

In theory, this could be possible. In practice, it’s unlikely to happen. Taking control of the system to capture Bitcoins, for instance, would also have the effect of destroying their value.

“Blockchain solves the problem of manipulation. When I speak about it in the West, people say they trust Google, Facebook, or their banks. But the rest of the world doesn’t trust organizations and corporations that much — I mean Africa, India, the Eastern Europe, or Russia. It’s not about the places where people are really rich. Blockchain’s opportunities are the highest in the countries that haven’t reached that level yet.”
Vitalik Buterin, inventor of Ethereum

 

 

A network of nodes

A network of so-called computing “nodes” make up the blockchain.

Node

(computer connected to the blockchain network using a client that performs the task of validating and relaying transactions) gets a copy of the blockchain, which gets downloaded automatically upon joining the blockchain network.

 

Together they create a powerful second-level network, a wholly different vision for how the internet can function.

Every node is an “administrator” of the blockchain, and joins the network voluntarily (in this sense, the network is decentralized). However, each one has an incentive for participating in the network: the chance of winning Bitcoins.

Nodes are said to be “mining” Bitcoin, but the term is something of a misnomer. In fact, each one is competing to win Bitcoins by solving computational puzzles. Bitcoin was the raison d’etre of the blockchain as it was originally conceived. It’s now recognized to be only the first of many potential applications of the technology.

There are an estimated 700 Bitcoin-likecryptocurrencies (exchangeable value tokens) already available. As well, a range of other potential adaptations of the original blockchain concept are currently active, or in development.

“Bitcoin has the same character a fax machine had. A single fax machine is a doorstop. The world where everyone has a fax machine is an immensely valuable thing.”
Larry Summers, Former US Secretary of the Treasury

The idea of decentralization

By design, the blockchain is a decentralized technology.

Anything that happens on it is a function of the network as a whole. Some important implications stem from this. By creating a new way to verify transactions aspects of traditional commerce could become unnecessary. Stock market trades become almost simultaneous on the blockchain, for instance — or it could make types of record keeping, like a land registry, fully public. And decentralization is already a reality.

A global network of computers uses blockchain technology to jointly manage the database that records Bitcoin transactions. That is, Bitcoin is managed by its network, and not any one central authority. Decentralization means the network operates on a user-to-user (or peer-to-peer) basis. The forms of mass collaboration this makes possible are just beginning to be investigated.

“I think decentralized networks will be the next huge wave in technology.”
Melanie Swan, author Blockchain: Blueprint for a New Economy (2015)

 

 

Who will use the blockchain?

As web infrastructure, you don’t need to know about the blockchain for it to be useful in your life.

Currently, finance offers the strongest use cases for the technology. International remittances, for instance. The World Bank estimates that over $430 billion US in money transfers were sent in 2015. And at the moment there is a high demand for blockchain developers.

The blockchain potentially cuts out the middleman for these types of transactions.  Personal computing became accessible to the general public with the invention of the Graphical User Interface (GUI), which took the form of a “desktop”. Similarly, the most common GUI devised for the blockchain are the so-called “wallet” applications, which people use to buy things with Bitcoin, and store it along with other cryptocurrencies.

Transactions online are closely connected to the processes of identity verification. It is easy to imagine that wallet apps will transform in the coming years to include other types of identity management.

“Online identity and reputation will be decentralized. We will own the data that belongs to us.”
William Mougayar, author The Business Blockchain: Promise, Practice, and Application of the Next Internet Technology (2016)

 

The Blockchain & Enhanced security

By storing data across its network, the blockchain eliminates the risks that come with data being held centrally.

Its network lacks centralized points of vulnerability that computer hackers can exploit. Today’s internet has security problems that are familiar to everyone. We all rely on the “username/password” system to protect our identity and assets online. Blockchain security methods use encryption technology.

The basis for this are the so-called public and private “keys”. A “public key” (a long, randomly-generated string of numbers) is a users’ address on the blockchain. Bitcoins sent across the network gets recorded as belonging to that address. The “private key” is like a password that gives its owner access to their Bitcoin or other digital assets. Store your data on the blockchain and it is incorruptible. This is true, although protecting your digital assets will also require safeguarding of your private key by printing it out, creating what’s referred to as a paper wallet.

A second-level network

With blockchain technology, the web gains a new layer of functionality.

Already, users can transact directly with one another — Bitcoin transactions in 2016 averaged over $200,000 US per day. With the added security brought by the blockchain new internet business are on track to unbundle the traditional institutions of finance.

Goldman Sachs believes that blockchain technology holds great potential especially to optimize clearing and settlements, and could represent global savings of up to $6bn per year.

“2017 will be a pivotal year for blockchain tech. Many of the startups in the space will either begin generating revenue – via providing products the market demands/values – or vaporize due to running out of cash. In other words, 2017 should be the year where there is more implementation of products utilizing blockchain tech, and less talk about blockchain tech being the magical pixie dust that can just be sprinkled atop everything. Of course, from a customers viewpoint, this will not be obvious as blockchain tech should dominantly be invisible – even as its features and functionality improve peoples’/business’ lives. I personally am familiar with a number of large-scale blockchain tech use cases that are launching soon/2017. This implementation stage, which 2017 should represent, is a crucial step in the larger adoption of blockchain tech, as it will allow skeptics to see the functionality, rather than just hear of its promise.”

–  George Howard, Associate Professor Brown University, Berklee College of Music and Founder of George Howard Strategic

 

 

The Blockchain a New Web 3.0?

The blockchain gives internet users the ability to create value and authenticates digital information. What will new business applications result?

Smart contracts

Distributed ledgers enable the coding of simple contracts that will execute when specified conditions are met. Ethereum is an open source blockchain project that was built specifically to realize this possibility. Still, in its early stages, Ethereum has the potential to leverage the usefulness of blockchains on a truly world-changing scale.

At the technology’s current level of development, smart contracts can be programmed to perform simple functions. For instance, a derivative could be paid out when a financial instrument meets certain benchmark, with the use of blockchain technology and Bitcoin enabling the payout to be automated.


The sharing economy

With companies like Uber and AirBnB flourishing, the sharing economy is already a proven success. Currently, however, users who want to hail a ride-sharing service have to rely on an intermediary like Uber. By enabling peer-to-peer payments, the blockchain opens the door to direct interaction between parties — a truly decentralized sharing economy results.

An early example, OpenBazaar uses the blockchain to create a peer-to-peer eBay. Download the app onto your computing device, and you can transact with OpenBazzar vendors without paying transaction fees. The “no rules” ethos of the protocol means that personal reputation will be even more important to business interactions than it currently is on eBay.


Crowdfunding

Crowdfunding initiatives like Kickstarter and Gofundme are doing the advance work for the emerging peer-to-peer economy. The popularity of these sites suggests people want to have a direct say in product development. Blockchains take this interest to the next level, potentially creating crowd-sourced venture capital funds.

In 2016, one such experiment, the Ethereum-based DAO (Decentralized Autonomous Organization), raised an astonishing $200 million USD in just over two months. Participants purchased “DAO tokens” allowing them to vote on smart contract venture capital investments (voting power was proportionate to the number of DAO they were holding). A subsequent hack of project funds proved that the project was launched without proper due diligence, with disastrous consequences.  Regardless, the DAO experiment suggests the blockchain has the potential to usher in “a new paradigm of economic cooperation.”


Governance

By making the results fully transparent and publicly accessible, distributed database technology could bring full transparency to elections or any other kind of poll taking. Ethereum-based smart contracts help to automate the process.

The app, Boardroom, enables organizational decision-making to happen on the blockchain. In practice, this means company governance becomes fully transparent and verifiable when managing digital assets, equity or information.


Supply chain auditing

Consumers increasingly want to know that the ethical claims companies make about their products are real. Distributed ledgers provide an easy way to certify that the backstories of the things we buy are genuine. Transparency comes with blockchain-based timestamping of a date and location — on ethical diamonds, for instance — that corresponds to a product number.

The UK-based Provenance offers supply chain auditing for a range of consumer goods. Making use of the Ethereum blockchain, a Provenance pilot project ensures that fish sold in Sushi restaurants in Japan has been sustainably harvested by its suppliers in Indonesia.


File storage

Decentralizing file storage on the internet brings clear benefits. Distributing data throughout the network protects files from getting hacked or lost.

Inter Planetary File System (IPFS) makes it easy to conceptualize how a distributed web might operate. Similar to the way a bittorrent moves data around the internet, IPFS gets rid of the need for centralized client-server relationships (i.e., the current web). An internet made up of completely decentralized websites has the potential to speed up file transfer and streaming times. Such an improvement is not only convenient. It’s a necessary upgrade to the web’s currently overloaded content-delivery systems.


Prediction markets

The crowdsourcing of predictions on event probability is proven to have a high degree of accuracy. Averaging opinions cancels out the unexamined biases that distort judgment. Prediction markets that payout according to event outcomes are already active. Blockchains are a “wisdom of the crowd” technology that will no doubt find other applications in the years to come.

Still, in Beta, the prediction market application Augur makes share offerings on the outcome of real-world events. Participants can earn money by buying into the correct prediction. The more shares purchased in the correct outcome, the higher the payout will be. With a small commitment of funds (less than a dollar), anyone can ask a question, create a market based on a predicted outcome, and collect half of all transaction fees the market generates.


Protection of intellectual property

As is well known, digital information can be infinitely reproduced — and distributed widely thanks to the internet. This has given web users globally a goldmine of free content. However, copyright holders have not been so lucky, losing control over their intellectual property and suffering financially as a consequence. Smart contracts can protect copyright and automate the sale of creative works online, eliminating the risk of file copying and redistribution.

Mycelia uses the blockchain to create a peer-to-peer music distribution system. Founded by the UK singer-songwriter Imogen Heap, Mycelia enables musicians to sell songs directly to audiences, as well as license samples to producers and divvy up royalties to songwriters and musicians — all of these functions being automated by smart contracts. The capacity of blockchains to issue payments in fractional cryptocurrency amounts (micropayments) suggests this use case for the blockchain has a strong chance of success.


Internet of Things (IoT)

What is the IoT? The network-controlled management of certain types of electronic devices — for instance, the monitoring of air temperature in a storage facility. Smart contracts make the automation of remote systems management possible. A combination of software, sensors, and the network facilitates an exchange of data between objects and mechanisms. The result increases system efficiency and improves cost monitoring.

The biggest players in manufacturing, tech and telecommunications are all vying for IoT dominance. Think Samsung, IBM and AT&T. A natural extension of existing infrastructure controlled by incumbents, IoT applications will run the gamut from predictive maintenance of mechanical parts to data analytics, and mass-scale automated systems management.


Neighbourhood Microgrids

Blockchain technology enables the buying and selling of the renewable energy generated by neighborhood microgrids. When solar panels make excess energy, Ethereum-based smart contracts automatically redistribute it. Similar types of smart contract automation will have many other applications as the IoT becomes a reality.

Located in Brooklyn, Consensys is one of the foremost companies globally that is developing a range of applications for Ethereum. One project they are partnering on is Transactive Grid, working with the distributed energy outfit, LO3. A prototype project currently up and running uses Ethereum smart contracts to automate the monitoring and redistribution of microgrid energy. This so-called “intelligent grid” is an early example of IoT functionality.


Identity management

There is a definite need for better identity management on the web. The ability to verify your identity is the lynchpin of financial transactions that happen online. However, remedies for the security risks that come with web commerce are imperfect at best. Distributed ledgers offer enhanced methods for proving who you are, along with the possibility to digitize personal documents. Having a secure identity will also be important for online interactions — for instance, in the sharing economy. A good reputation, after all, is the most important condition for conducting transactions online.

Developing digital identity standards is proving to be a highly complex process. Technical challenges aside, a universal online identity solution requires cooperation between private entities and government. Add to that the need to navigate legal systems in different countries and the problem becomes exponentially difficult. E-Commerce on the internet currently relies on the SSL certificate (the little green lock) for secure transactions on the web. Netki is a startup that aspires to create an SSL standard for the blockchain. Having recently announced a $3.5 million seed round, Netki expects a product launch in early 2017.


AML and KYC

Anti-money laundering (AML) and know your customer (KYC) practices have a strong potential for being adapted to the blockchain. Currently, financial institutions must perform a labour intensive multi-step process for each new customer. KYC costs could be reduced through cross-institution client verification, and at the same time increase monitoring and analysis effectiveness.

Startup Polycoin has an AML/KYC solution that involves analysing transactions. Those transactions identified as being suspicious are forwarded on to compliance officers. Another startup Tradle is developing an application called Trust in Motion (TiM). Characterized as an “Instagram for KYC”, TiM allows customers to take a snapshot of key documents (passport, utility bill, etc.). Once verified by the bank, this data is cryptographically stored on the blockchain.


Data management

Today, in exchange for their personal data people can use social media platforms like Facebook for free. In future, users will have the ability to manage and sell the data their online activity generates. Because it can be easily distributed in small fractional amounts, Bitcoin — or something like it — will most likely be the currency that gets used for this type of transaction.

The MIT project Enigma understands that user privacy is the key precondition for creating of a personal data marketplace. Enigma uses cryptographic techniques to allow individual data sets to be split between nodes, and at the same time run bulk computations over the data group as a whole. Fragmenting the data also makes Enigma scalable (unlike those blockchain solutions where data gets replicated on every node). A Beta launch is promised within the next six months.


Land title registration

As Publicly-accessible ledgers, blockchains can make all kinds of record-keeping more efficient. Property titles are a case in point. They tend to be susceptible to fraud, as well as costly and labour intensive to administer.

A number of countries are undertaking blockchain-based land registry projects. Honduras was the first government to announce such an initiative in 2015, although the current status of that project is unclear. This year, the Republic of Georgia cemented a deal with the Bitfury Group to develop a blockchain system for property titles. Reportedly, Hernando de Soto, the high-profile economist and property rights advocate, will be advising on the project. Most recently, Sweden announced it was experimenting with a blockchain application for property titles.


Stock trading

The potential for added efficiency in share settlement makes a strong use case for blockchains in stock trading. When executed peer-to-peer, trade confirmations become almost instantaneous (as opposed to taking three days for clearance). Potentially, this means intermediaries — such as the clearing house, auditors and custodians — get removed from the process.

Numerous stock and commodities exchanges are prototyping blockchain applications for the services they offer, including the ASX (Australian Securities Exchange), the Deutsche Börse (Frankfurt’s stock exchange) and the JPX (Japan Exchange Group). Most high profile because the acknowledged first mover in the area, is the Nasdaq’s Linq, a platform for private market trading (typically between pre-IPO startups and investors). A partnership with the blockchain tech company Chain, Linq announced the completion of it its first share trade in 2015. More recently, Nasdaq announced the development of a trial blockchain project for proxy voting on the Estonian Stock Market.


“2016 was the year in which blockchain theory achieved general acceptance, but remained in theory, with the big players lingering around the hoop waiting to see who would take the first shot. As the year comes to an end, blockchain technology is tantalizingly close to turning the corner and entering the realm of small-scale commercial ability. Overall, 2017 is going to be the year of the very well-considered and well-funded proof of concept, with a few projects achieving revenue positive status. Venture investment is going to continue to be substantial but less than we saw in 2016 and 2015. I’d predict one or two exits by acquisition.” 

– Judd Bagley  Director of Communications at Overstock.com and Chief Evangelist at t0.com

 

 

Saturday, June 10, 2017

Advanced Persistent Threat (APT)

http://searchsecurity.techtarget.com/definition/advanced-persistent-threat-APT

An advanced persistent threat (APT) is a network attack in which an unauthorized person gains access to a network and stays there undetected for a long period of time. The intention of an APT attack is to steal data rather than to cause damage to the network or organization. APT attacks target organizations in sectors with high-value information, such as national defense, manufacturing and the financial industry.

In a simple attack, the intruder tries to get in and out as quickly as possible in order to avoid detection by the network's intrusion detection system (IDS). In an APT attack, however, the goal is not to get in and out but to achieve ongoing access. To maintain access without discovery, the intruder must continuously rewrite code and employ sophisticated evasion techniques. Some APTs are so complex that they require a full time administrator.

An APT attacker often uses spear fishing, a type of social engineering, to gain access to the network through legitimate means. Once access has been achieved, the attacker establishes a back door.

The next step is to gather valid user credentials (especially administrative ones) and move laterally across the network, installing more back doors. The back doors allow the attacker to install bogus utilities and create a "ghost infrastructure" for distributing malware that remains hidden in plain sight.

Although APT attacks are difficult to identify, the theft of data can never be completely invisible. Detecting anomalies in outbound data is perhaps the best way for an administrator to discover that his network has been the target of an APT attack.

Micron Addresses IoT Security With New Authenta™ Technology in Flash Memory

Ref: https://www.micron.com/about/blogs/2017/may/micron-addresses-iot-security-with-new-authenta-technology-in-flash-memory?utm_source=Micron+Master+List&utm_campaign=9b513199e4-EMAIL_CAMPAIGN_2017_06_08&utm_medium=email&utm_term=0_1ff6a9a057-9b513199e4-18982629

Only a couple of years ago we were discussing how one day the Internet of Things (IoT) would enable higher levels of intelligence and functionality in a wide array of things,  from devices in the home to the factory. This growth is happening faster than many expected, but so are the cyber-attacks that are leveraging these connected devices everywhere. In fact, according to Gartner, by 2020, over 25% of identified attacks in enterprises will involve IoT. So far, the cost and complexity of adding security to IoT end-points has led to it mostly being ignored or an afterthought. But continued onslaught of cyber-attacks has raised the awareness that OEMs can no longer afford to ignore this issue and risk their IoT driven business and company’s reputation. They must embed security in the DNA of their IoT devices now.
  
To address this challenge, Micron has recently launched a new technology capability that adds a strong layer of defense to a broad array of IoT devices. Our technology can build upon existing levels of security as defense in depth layered security where previously it may have been too costly. The premise is simple: We’re leveraging existing standard non-volatile memory (NVM) sockets, or flash memory, to do some heavy-lifting that protects the integrity of the device itself as well as the software that runs on the device. New Micron® flash memory with Authenta™ technology will replace existing flash devices with the same NVM function while adding a new unique level of hardware based security capabilities. And system designers can leverage these capabilities into an end-to-end, cloud-to-device IoT security strategy enabled by simple middleware and software development kits (SDKs).



A Zero-Component Approach: Just Use Flash

Flash memory has been one of the most standardized semiconductors in electronic devices since early PC days. That’s when the Basic Input/Output System (BIOS) was one of the first solutions to leverage a single volt power supply flash memory that could provide nonvolatility as well as the ability to make in-system modifications. Over time as more functionality and performance have been added to flash memory, the electrical interface to flash has remained fairly constant. Various types of flash memory exist today, including serial NOR, parallel NOR, serial NAND, parallel NAND, e.MMC, UFS, etc. These sockets are sourcable from multiple vendors and are used in most embedded systems across various industries and applications.  

For example, today we see standard serial NOR in a wide array of applications like medical devices, factory automation boards, automotive ECUs, smart meters and internet gateways, just to name a few. Given diversity of chipset architectures (processors, controllers or SoCs), operating systems, supply chains used across these applications, flash memory actually represents the most common denominator building block in these systems. Leveraging flash memory to add a strong level of security capability in the system makes this approach possibly the simplest and most scalable security implementation in the industry.

Location of Your Hardware-Based Roots of Trust Matters

System resilience today is typically characterized by the location of “roots of trust” integrated into devices and leveraged by the solution for the security functions they provide. For more information on roots of trust, look for the definition created by the National Institute of Technology (NIST) in Special Publication 800-164. The industry has lot of varied implementations of roots of trust at the system level, using a mix of hardware and software capabilities, resulting in fragmentation of approaches and confusing level of security. The perplexing array of options has also done a good job of masking a key gap: how to defend the non-volatile memory which is where critical code and data is stored.

Standard thinking is driving engineers to expect the processor and other secure elements like hardware security modules (HSMs) to offer critical security services to their systems. This has created a security gap at the lowest levels of boot in many systems where discrete flash memory components store system-critical code and data. The flash has become the target for many hackers to create Advanced Persistent Threats (APT’s) that can mask themselves from higher levels of code and resist removal. In many of these cases, flash memory is re-imaged or rewritten with new malicious code undermining the integrity of that device.

Micron’s Authenta™ technology integrates true hardware-based roots of trust into flash memory, enabling strong cryptographic identity and health management for IoT devices. By moving essential security primitives in-memory, it becomes simpler to protect the intregrity of code and data housed within the memory itself. This approach significantly enhances system level security while minimizing the complexity and cost of implementations.

Making Security Easy to Implement

At Hannover Messe, Micron and Microsoft announced a new IoT device management capability that leverages key elements of our new Authenta technology in flash memory. This capabilitiy enables device onboarding and management by the Microsoft® Azure® IoT cloud using Micron’s Authenta enabled flash memory and associated software solutions. The Micron solutions offer a strong cryptographic identity that becomes the basis for critical device provisioning services like the newly announced Azure IoT Hub Device Provisioning Service (DPS). This new DPS along with Authenta enabled memory can enable zero-touch provisioning of devices to the correct IoT hub as well as other valuable services.

To implement this capability, Micron and Microsoft leveraged the Device Identity Composition Engine (DICE), an upcoming standard from the Trusted Computing Group (TCG), and Micron’s Authenta enabled memory to demonstrate how only trusted hardware can gain access to the Microsoft Azure IoT cloud (see Microsoft blog). One key aspect of the combined solution is that the health and identity of an IoT device is verified in memory where critical code is typically stored. The unique DNA of each IoT device can now offer customers end-to-end device integrity at a new level, starting at the boot process. This will enable additional functionality like hardware-based device attestation and provisioning as well as administrative remediation of the device if necessary.

Strong Identity and Security for All

Today, it is expected that Fortune 100 companies staff cybersecurity specialists with the intent to provide truly world-class cybersecurity protection at all levels possible. This comes at a high cost, and smaller companies don’t have the options that larger companies have to offer these corporate services. The cost of hardware and software security implementation and management, as well as the significant fragmentation of security technology, have created too many hurdles for many companies to burden. With the release of our Authenta technology, Micron, in collaboration with our partners, intends to simplify device security implementations and significantly reduce financial burdens for all companies to launch IoT deployments affordably and securely.

Wednesday, June 7, 2017